Editorial August 2022 About the Paint Industry Part 2

Rajiv Parikh

16 Aug 2022

Last month we discussed the basics of the paint industry. We started with Thermoplastic mechanism. The below are more details of the various mechanisms way binders are used.

Thermosetting mechanisms: Paints that cure by polymerization are generally one- or two-package coatings that polymerize by way of a chemical reaction, and cure into a cross-linked film. Depending on composition they may need to dry first, by evaporation of solvent. Classic two-package epoxies or polyurethanes would fall into this category. The "drying oils", counter-intuitively, actually cure by a crosslinking reaction even if they are not put through an oven cycle and seem to simply dry in air. The film formation mechanism of the simplest examples involve first evaporation of solvents followed by reaction with oxygen from the environment over a period of days, weeks and even months to create a crosslinked network. Classic alkyd enamels would fall into this category. Oxidative cure coatings are catalyzed by metal complex driers such as cobalt naphthenate though cobalt octoate is more common. Recent environmental requirements restrict the use of volatile organic compounds (VOCs), and alternative means of curing have been developed, generally for industrial purposes. UV curing paints, for example, enable formulation with very low amounts of solvent, or even none at all. This can be achieved because of the monomers and oligomers used in the coating have relatively very low molecular weight, and are therefore low enough in viscosity to enable good fluid flow without the need for additional thinner. If solvent is present in significant amounts, generally it is mostly evaporated first and then crosslinking is initiated by ultraviolet light. Similarly, powder coatings contain little or no solvent. Flow and cure are produced by the heating of the substrate after electrostatic application of the dry powder.

Combination mechanisms: So-called "catalyzed" lacquers" or "crosslinking latex" coatings are designed to form films by a combination of methods: classic drying plus a curing reaction that benefits from the catalyst. There are paints called plastisols/organosols, which are made by blending PVC granules with a plasticiser. These are stoved and the mix coalesces.

Diluent or solvent or thinner
The main purposes of the diluent are to dissolve the polymer and adjust the viscosity of the paint. It is volatile and does not become part of the paint film. It also controls flow and application properties, and in some cases can affect the stability of the paint while in liquid state. Its main function is as the carrier for the non-volatile components. To spread heavier oils (for example, linseed) as in oil-based interior house paint, a thinner oil is required. These volatile substances impart their properties temporarily—once the solvent has evaporated, the remaining paint is fixed to the surface. This component is optional: some paints have no diluents. Water is the main diluent for water-borne paints, even the co-solvent types. Solvent-borne, also called oil-based, paints can have various combinations of organic solvents as the diluent, including aliphatics, aromatics, alcohols, ketones and white spirit. Specific examples are organic solvents such as petroleum distillate, esters, glycol ethers, and the like. Sometimes volatile low-moleular weight synthetic resins also serve as diluents.

Pigment, dye and filler
Pigments are granular solids incorporated in the paint to contribute color. Dyes are colorants that dissolve in the paint. Fillers are granular solids incorporated to impart toughness, texture, give the paint special properties, or to reduce the cost of the paint. During production, the size of such particles can be measured with a Hegman gauge. Rather than using only solid particles, some paints contain dyes instead of or in combination with pigments. Pigments can be classified as either natural or synthetic. Natural pigments include various clays, calcium carbonate, mica, silicas, and talcs. Synthetics would include engineered molecules, calcined clays, blanc fixe, precipitated calcium carbonate, and synthetic pyrogenic silicas. Hiding pigments, in making paint opaque, also protect the substrate from the harmful effects of ultraviolet light. Hiding pigments include titanium dioxide, phthalo blue, red iron oxide, and many others. Fillers are a special type of pigment that serve to thicken the film, support its structure and increase the volume of the paint. Fillers are usually cheap and inert materials, such as diatomaceous earth, talc, lime, barytes, clay, etc. Floor paints that must resist abrasion may contain fine quartz sand as a filler. Not all paints include fillers. On the other hand, some paints contain large proportions of pigment/ filler and binder. Some pigments are toxic, such as the lead pigments that are used in lead paint. Paint manufacturers began replacing white lead pigments with titanium white (titanium dioxide), before lead was banned in paint for residential use in 1978 by the US Consumer Product Safety Commission. The titanium dioxide used in most paints today is often coated with silica/alumina/zirconium for various reasons, such as better exterior durability, or better hiding performance (opacity) promoted by more optimal spacing within the paint film. Micaceous iron oxide (MIO) is another alternative to lead for protection of steel, giving more protection against water and light damage than most paints. When MIO pigments are ground into fine particles, most cleave into shiny layers, which reflect light, thus minimizing UV degradation and protecting the resin binder. Most pigments used in paint tend to be spherical, but lamellar pigments, such as glass flake and MIO have overlapping plates, which impede the path of water molecules. For optimum performance MIO should have a high content of thin flake-like particles resembling mica. ISO 10601 sets two levels of MIO content.MIO is often derived from a form of hematite.

Additives
Besides the three main categories of ingredients, paint can have a wide variety of miscellaneous additives, which are usually added in small amounts, yet provide a significant effect on the product. Some examples include additives to modify surface tension, improve flow properties, improve the finished appearance, increase wet edge, improve pigment stability, impart antifreeze properties, control foaming, control skinning, etc. Other types of additives include catalysts, thickeners, stabilizers, emulsifiers, texturizers, adhesion promoters, UV stabilizers, flatteners (de-glossing agents), biocides to fight bacterial growth and the like.

Additives normally do not significantly alter the percentages of individual components in a formulation. Next month we will bring you applications of the paint industry. (to be continued)

 

News Articles More


Contact Now
Have a question or feedback, let us know!

Please enter the string as shown above: